像大脑一样的机器
既然我们的目标是制造一台具有人类智能的机器,为何不直接复制一下人脑呢?毕竟,人类自己是智能的最好样本。过去几十年,神经科学为大脑如何处理和存储信息提供了很多新的认识。
人脑是由连接着1000亿个神经元的100万亿个神经突触组成的网络,这些神经突触和神经元的状态每秒改变10~100次。人脑的这种结构使得它非常擅长诸如在图片中辨认物体之类的任务。一台超级计算机拥有100万亿字节的内存,拥有的晶体管电路的运算速度比人脑至少快1亿倍,这种结构使得计算机擅长有明确定义、工作量大、要求精确的任务。
这两种结构各有优缺点。如果完成模糊性任务,人脑更占优势。比如,诸如识别面孔的任务,无需计算高度精确的电路。
相比于超级计算机,人脑是一台节能机器。人脑进行各种计算时,所需功率约20瓦,只相当于一个亮度很低的老式电灯泡。而一台进行类似计算的超级计算机所需功率约20万瓦。据统计,2010年,谷歌公司用电23亿千瓦时(度),相当于20.7万户美国家庭一年的用电量、41座帝国大厦一年的用电量。一个表面上看起来并非传统重工业的公司却是个耗电大户,这不由引发研究人员思考人脑的节能高效。
我们都知道,任何一台电脑都有CPU、内存和硬盘。假设CPU是你,内存是桌子,硬盘是柜子,而程序则是那些你放在柜子里的各种书籍、文件、玩具等,CPU负责运算和执行各个程序,硬盘存储着各个程序。如果想看书或玩玩具,你得先把相应的东西从柜子里拿出来放到桌面上,然后才可以在桌面上看书或玩玩具。桌子就相当于内存,是一个临时存储程序的地方。在电脑里,这三个部件缺一不可。可是,在人脑里,我们并没有相应的这些部件,处理、存储信息都是放在一起同时进行的。按照传统计算机的结构,你玩完玩具想去看书,需要先把玩具从桌子放回柜子里,然后再从柜子里拿一本书放到桌子上,完成多个不同任务需要一道道的工序,效率就会降低,可是人脑允许你同时做很多件事情,不需要做完一件再做另外一件。
据此,很多研究人员正在模仿人脑制造新型计算机:它们平行地而不是一件一件地完成任务,它们更加模拟化而不是数字化,它们虽然会慢一些但是耗能较少。