• 资讯
  • News
  • 行业资讯
  • IndustryNews
  • 人工智能的未来,是裂变还是融合

    • 行业资讯
    • 时间:2016-06-16
    • 来源: 新浪科技
    • 编译:GXC
    • 我要投稿
    • 0
       近日,硅谷著名连续创业家,斯坦福大学人工智能与伦理学教授,《人工智能时代》作者杰瑞-卡普兰来到中国,在清华大学和李开复等人谈及人工智能的未来。他们就“人工智能带来的社会结构的变化”、“人工智能领域的创业”等话题展开对话。
     
      杰瑞-卡普兰对话李开复:人工智能的未来,是裂变还是融合
     
      主持人:
     
      从我个人来说,正好我女儿是明年高考,这样还有一年的时间,可能有更多的理想。
     
      接下来我们就进入下一个环节,请杰瑞-卡普兰和李开复老师进行一个对谈。
     
      刚才李开复老师也提到了Alpha Go,这个是2016年全球很瞩目的世界,第一个问题也是围绕着Alpha Go之后人工智能可谓热火朝天。再往前看一下,人工智能未来发展会有什么样的瓶颈吗?根据当下的技术发展,这个瓶颈多久会出现?
     
      李开复:
     
      其实我觉得机会要更大一些,因为其实现在所有的领域,尤其在国内,几乎都还没有用上AI,用上的领域太多了,忙不急去找投资的标的,甚至开始要想培训自己的学生,因为需要的人才远远不够,机会非常多。
     
      它的瓶颈也是有了,比如说其实人工智能是没有办法解释它为什么做一个决定的?这个时候我们可能就卡住了,当你只知道做什么,不知道为什么,比如看Alpha Go为什么下这步棋,为什么输了,为什么赢呢?怎么输的?完全答不出来,答不出来的时候,很多领域就会有问题。
     
      还有就是说一个机器现在还不能完整地复制自己,当然这也是一个担忧了,所以还是人的工具,自我复制能力不够强。
     
      基本是在人所创造的框架下去做人给它布的这个局里面,去调一些参数和解决方案,它还没有自我开创的能力。
     
      杰瑞-卡普兰:
     
      我觉得大家好像普遍有一个误解,觉得未来所有的工种,所有的工作都能被们人工智能所取代,大家误会了。不管技术发展到什么程度,人类的部分工作是永远无法为机器所取代的,大家之所以提出这样的假象,是基于一种工程的观点,因为在工程师的眼中看到的只是一个结论,有时候会忽略整个过程。
     
      有三大类的工作很难被计其所取代,第一类关于情感的表述和表达,有时候需要人与人之间的沟通,来给予安慰和慰藉的,这样的工作很难用机器去完成。
     
      第二类需要成熟的艺术技能,比如作为一个小提琴家,你也不希望欣赏的是乐器的演奏。
     
      第三类工作,哪怕在某些特定的情况下,能够用机器去制作一些高级的成衣,有时候你也希望是一些传统的手工师傅进行高级的定制,为你呈现一条手工制作的长裙,这三类工作在未来很难为人工智能和机器所取代。
     
      张晓卿:
     
      未来将会是一个人机共生的新生态,第二个问题,因为我们举办这个活动,我们出版了杰瑞的书,我想问一个问题,李开复老师在推荐序里面写道,当时你读GO公司的一个状态,有哪个故事和哪个观点给你带来比较深刻的触动?
     
      李开复:
     
      对于杰瑞-卡普兰先生所谈到未来人机如何能够非常和谐地相处,这方面我觉得是很大的一个机会和挑战,也就是说什么样的一个经济体系,还有那些所拥有资本市场或者资本主义国家里面,所拥有特别大的财团,他们怎么样能够用足够的社会责任感来去引导这个社会,而不是被诱惑地用这些大量的数据来占普通人的便宜,或者让贫富差距能够拉得更大。
     
      杰瑞-卡普兰:
     
      首先我觉得大家就如何为社会不同实体分配责任的这个大前提下,要以一种谨慎的态度来考虑,我觉得首先社会应该有一套比较严谨而理性的政策,这些政策就包括一些激励政策,能够鼓励所有的社会实体,包括企业在完成自我利益,实现自我发展的同时,能够向着整个社会全体利益的方向运行。
     
      李开复:
     
      想问一下一个问题,比如说在人工智能整个系统和技术的发展下,有很多工人可能就会失业或者找不到饭碗。某一些人群,他们可能会失业或者会找不到工作,那在这样的情况下,您觉得是谁有义务,有责任为他们提供再教育,或者是补偿,或者是别的相关的社会方面的支持呢?
     
      杰瑞-卡普兰:
     
      首先,我想这么来回答,当然我不是光说这一点可以在美国实行,我也不以美国为单例,我在美国买房子是要按揭,这个按揭的钱谁来付呢?可以来想这个问题。
     
      如果某人失业或者是无法找到就业岗位的话,我觉得政府也好,雇主也好,他不应该来出这个钱为该名待业者去支付他受教育的费用,我觉得应该是这个待业者自己用自己未来的劳动收入来作为抵押品,你未来因为可能会赚到的某一部分钱,你把这些钱从雇主那边借过来,由新的雇主为你提供再就业和再培训的机会。
     
      这就要求我们金融行业可能要做一些金融方面的创新了,不过我觉得在整个实施的过程中有一个难点或者矛盾点,因为某一个失业者,他现在的技能是基于他原来受教育的程度,那他原来受教育的程度和现在的技能是有限的,他在进行估值的时候,其实相当于被低估了的,他能够获得的贷款比他真正获得的贷款要少。
     
      不过我觉得这种方式,利用你自己未来的工资或者是未来潜在的技能去要求雇主对你进行再培训,这种方式可行。同时这也会进一步刺激现代社会整个教育体系的革新。
     
      主持人:
     
      我本来还有第三个问题,因为两位除了是人工智能方面的专家,另外你又是创业者,并且像杰瑞,你是连续的创业者,因为中国现在也在双创的时代,请你能够给出人工智能领域创业的人什么样的建议?在什么样的领域是可以有所突破的?
     
      李开复:
     
      人工智能创业其实是非常困难的,首先我认为你一定要有非常厉害的科学家和工程师,而且有愿意解决务实问题的这种心态,这个其实带来很大的挑战。因为大部分人认为这个博士、教授、研究员不见得是很好的创业者。但是做人工智能没有这批人还真做不出来,所以我觉得工程师和这些博士要能够很融洽地在一起工作。
     
      根据我过去在一些大公司工作的经验是非常困难的过程,因为工程师总认为是我挣的钱,科学家总认为说我读的学位更高,这两个谁都不让谁,能够在一起工作作出很好的工程产品难度是相当高的,所以千万不要低估了创业的难度。
     
      另外一个人工智能的门槛,今天懂人工智能的人很少,所以你可以靠技术成为你的第一个竞争优势。但是长期来说,真正唯一可持续的一个竞争优势,就是你有非常大量的数据,不断地被输送到你的系统。而且你可以产生更多的数据,而且这个数据不是公开可以获取,也不是可以简单靠人来标注的。比如说产生了这个良性循环以后,你的power特别巨大,比如百度知道,谁点哪个搜索结果,淘宝知道你购买了什么商品,可以不断地修正人工智能,可以让更多人在原来假设的情况之下购买商品。face++知道谁最终经过淘宝的验证,知道谁是骗子,谁不是骗子。
     
      一个非常好的人工智能公司往往是靠特别大量数据的滚动,而且越强的公司就会越来越强,就像google、facebook,像中国的科大迅飞,它能把数据的累积、迭代和自动标注形成一个良性的循环,这是过去的创业者从来没有思考过的问题,而现在变成了一个特别核心的问题。
     
      下面要有非常好的商业思维和逻辑,还有很好的耐心,因为做这种人工智能的产品,有时候不是一步登天的,比如说吴甘沙做一辆无人驾驶车,要多少年的堆积和累积才能做出来的。比如说我们希望能够做到一个第四范式,需要帮银行赚钱、省钱,这个也需要很多年做出来的。
     
      这跟过往很多的创业不太一样,以前的创业比如说某些社交、直播、手游,只要抓对了时机,产品做得够好,然后快速地起量,似乎一个“独角兽”就可能产生,失败的概率很大。但人工智能创业绝对不是这样的,一定是一个多年的累积,你要累积人才,累积数据,累积产品用户反馈,而且它不是一个2C的产品,是一个2B的产品。所以人工智能的创业是门槛相当高的,刚才几个问题,技术的问题、人才的问题、融合的问题、数据的问题,还有耐心的问题,当然还要找对投资人,像创新工厂没问题。
     
      要不然一个VC用正常的方法推你起量、变现就惨了,就完蛋了,一定要懂你这个行业的,门槛相当高,绝对没有任何的用意希望所有人走这一行,因为前景非常得多。
     
      杰瑞-卡普兰:
     
      其实我的建议是这样,我觉得一个人工智能的初创公司究竟能够成功与否,并不在于人工智能本身这个技术是不是足够好?足够强?我觉得关键是一个匹配程度。
     
      做一个创业者,您应该有这种商业的敏感,在你选择技术的时候,这个技术是不是匹配你的目标市场?匹配你的目标人群?
     
      同时作为一个创业者,你应该有足够的知识和足够的能量,去找到现在这个未成熟的技术和目标市场之间微妙的差距,和你是不是能够弥合这个差距重要的差别?我觉得找到目标市场,找到匹配的技术,才是成功的前提。
    声明:凡资讯来源注明为其他媒体来源的信息,均为转载自其他媒体,并不代表本网站赞同其观点,也不代表本网站对其真实性负责。您若对该文章内容有任何疑问或质疑,请立即与中国机器人网(www.robot-china.com)联系,本网站将迅速给您回应并做处理。
    电话:021-39553798-8007
    [打印文本] []
    
    全部评论(0
    TOP Bookmark